

EtherNet/IP – Modbus
XPort, NET232, and NET485

xxx-xxx-xxx

Document Version 1.08x

May 26, 2010

Grid Connect, Inc.
1630 W Diehl Rd

Naperville, IL 60563
(630) 245-1445

 2010 Grid Connect All rights reserved.

No part of this manual may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or information storage and retrieval systems, for any
purpose other than the purchaser's personal use, without the express written permission of Grid
Connect, Inc.

The information contained in this document is subject to change without notice. Grid Connect makes
no warranty of any kind with regard to this material, including, but not limited to, the implied
warranties of merchantability or fitness for a particular purpose. In no event shall Grid Connect be
liable for any incidental, special, indirect, or consequential damages whatsoever included but not
limited to lost profits arising out of errors or omissions in this manual or the information contained
herein.

Trademarks

Grid Connect, the Grid Connect logo, and combinations thereof are registered trademarks of Grid
Connect, Inc.

This manual was produced by the Technical Communications department of Grid Connect, Inc.

Revision List
Part Number: xxx-xxx-xxx

Rev Date Author Comments
1.01 Apr 4, 05 JVK Initial Release, Doc aligned with Firmware v1.08
1.02 May 4, 05 JVK Update for Firmware v1.09, added binary file spec
1.03 June 29, 05 JVK Update for Firmware v1.10
1.04 Mar 23, 06 JVK Update for Firmware v1.11
1.05 July 1, 08 JVK Update for Firmware v1.11d, fix type-o’s
1.06 Sept 24, 08 JVK Update for Firmware v1.12
1.07 Dec 17, 09 JVK Added hardware doc refs, hex values in tables
1.08 JVK Update for Firmware v1.13

 Table of Contents •••• i

Table of Contents

1 Introduction 1

1.1 Purpose of This Manual...1
1.2 Overview ...1
1.3 Necessary Tools ..1
1.4 EtherNet/IP Terms of Usage..2
1.5 Documentation and Firmware Updates ...2

2 Features 3

3 XPort Operation 4

3.1 Configuration Lock & Unlock...4
3.2 Bridge Configuration Object (Class 0x64) ..5

3.2.1 Modbus Status (Attribute 100) ...7
3.2.2 Extended Modbus Status (Attribute 101)..7
3.2.3 Modbus Baud Rate (Attribute 104)...7
3.2.4 Modbus Parity (Attribute 107)..8
3.2.5 Actively Scan Slave and Run/Idle for Modbus Client (Attributes 108 & 109)8
3.2.6 BOOTP Behavior (Attribute 110)...8
3.2.7 EtherNet/IP Network and Module Status Registers (Attributes 111 & 112) ..9
3.2.8 IP Address, Subnet Mask, and Gateway Registers (Attributes 115, 116, &
117) 9
3.2.9 MAC Address Registers (Attribute 118) ..10
3.2.10 Modbus Master Timings & Behavior (Attributes 119, 120, 121, & 122)...10

3.3 Input (T->O) EtherNet/IP to Modbus Mapping (Class 0x65)12
3.4 Output (O->T) EtherNet/IP to Modbus Mapping (Class 0x66).................................14
3.5 Identity Configuration Object (Class 0x6E) ..16

3.5.1 Custom Ethernet MAC Address (Attribute 100) ..16
3.5.2 Product Revision (Attribute 104)..16
3.5.3 Serial Number (Attribute 106)..16
3.5.4 Product Name (Attribute 107) ..16

3.6 Input (T->O) Assembly Object (Class 0x04, Instance 0x65)17
3.7 Output (O->T) Assembly Object (Class 0x04, Instance 0x66)..................................17
3.8 Configuration Assembly Object (Class 0x04, Instance 0x80)...................................17

4 TFTP Services 18

4.1 Configuration File ...18
4.1.1 Uploading and Downloading ..18
4.1.2 Binary File Specification ..18

4.2 Firmware Upload...20

EtherNet/IP – Modbus XPort Introduction •••• 1

1 Introduction

1.1 Purpose of This Manual
This document describes the operation of the Lantronix XPort customized by Grid Connect to enable
Modbus ASCII/RTU devices with EtherNet/IP communications. The XPort is the primary component
of the NET232 and NET485 products, therefore this manual applies to the operation of the EIP-MB
versions of them as well.

NOTE: This manual is only a software/firmware reference. The following manuals should be consulted
as hardware references for the XPort, NET232, and NET485. Only refer to the sections listed.
Anything else in these manuals does not apply to the EIP-MB versions. Copies of these documents are
included on the EIP-MB product CD.

� XPort_IntGuide.pdf - Section 2

� NET232_UM_800232_c.pdf - Sections 2.5, 2.7, 2.8, 2.9

� NET485_UM_800240_c.pdf - Sections 1.2, 1.3, 2.2, 2.3, 2.4

The EIP-MB firmware does not utilize everything available in the hardware of the above platforms.
The differences are listed below:

� XPort - The EIP-MB firmware does not use the Configurable Pins.

� NET232 - The EIP-MB firmware does not use RTS and CTS.

1.2 Overview
The XPort behaves as an EtherNet/IP server device and a Modbus client capable of communicating
with one Modbus slave. An XPort is mountable to a circuit board therefore it is convenient to add this
component to an existing Modbus ASCII or RTU slave device.

The XPort is configurable via vendor specific objects in EtherNet/IP or via an upload of a
configuration file. The user sets parameters in these objects to set up a table of Modbus function
codes, coils, and registers supported by the slave. This table describes the mapping of coil and register
data into the EtherNet/IP I/O messages. Internally, the mapped Modbus coils and registers are polled
regularly by a Modbus master/client. The client continuously reads and writes internal buffers with the
values of these coils and registers. This data is available via I/O data assemblies in the
producer/consumer connection over EtherNet/IP.

1.3 Necessary Tools
The following tools are necessary for configuring this XPort:

• BOOTP Server – the XPort initially powers up and attempts to obtain an IP address using
BOOTP. If no BOOTP server responds, the XPort will revert to a default IP address.

• EtherNet/IP Messaging Tool – can be a PLC or Software Tool, must be capable of
establishing an explicit messaging connection and sending Get_Attribute_Single and
Set_Attribute_Single EtherNet/IP explicit messages.

• TFTP Client Software – required to download/upload configuration files or to upload new
firmware.

2 •••• Introduction EtherNet/IP – Modbus XPort

1.4 EtherNet/IP Terms of Usage
EtherNet/IP Technology is governed by the Open DeviceNet Vendor Association, Inc (ODVA). Any
person or entity that makes and sells products that implement EtherNet/IP Technology must agree to
the Terms of Usage Agreement issued by ODVA. See www.odva.org for details.

1.5 Documentation and Firmware Updates
Updates to this document and the XPort-EIP-MB firmware are available at:

http://developer.gridconnect.com

EtherNet/IP – Modbus XPort Features •••• 3

2 Features
The EtherNet/IP – Modbus XPort has the following features:

• Supports 1 EtherNet/IP I/O connection and 2 EtherNet/IP TCP connections.

• Mappings of Modbus Data to/from EtherNet/IP I/O Data are fully configurable.

• EtherNet/IP Module and Network Status LED states available to Modbus Slave.

• EtherNet/IP Identity Object attributes configurable.

• Ethernet MAC address configurable.

• Firmware is unlocked by default for ease of initial configuration, but it can be locked to
prevent end-users from changing mappings or Identity Object attributes.

• Internal TFTP Server to upload new firmware and upload/download all of the configuration
data – once one XPort is set up, download it’s configuration, then upload the file to the rest of
your XPorts.

• BOOTP supported.

4 •••• XPort Operation EtherNet/IP – Modbus XPort

3 XPort Operation

3.1 Configuration Lock & Unlock
The XPort provides a means to unlock and lock the configuration, so it can or cannot be changed via
Ethernet. Out of the box, the module powers up with the configuration unlocked since it does not yet
contain a configuration. The configuration contains an attribute that can set the power-up default to be
locked.

When the configuration is locked, the module behaves as follows:

• Attributes of Objects 0x64, 0x65, and 0x66 are read-only (“Set_Attribute_Single” service will
fail).

• Object 0x6E (the Identity Configuration) does not exist.

• TFTP uploads of firmware and configuration files are denied.

• The Modbus client is fully functional.

When the configuration is unlocked, the module behaves as follows:

• Attributes of Objects 0x64, 0x65, 0x66, and 0x6E are configurable.

• TFTP uploads of firmware and configuration files are accepted.

• The Modbus client stops scanning (regardless of the values in the “Run/Idle Mode” and
“Actively Scan Slave” attributes!!)

To toggle the lock, the following EtherNet/IP explicit message must be sent to the XPort:

Service Code Class ID Instance ID Attribute ID Data

0x45 0x67 0x89 0xAB 0xCD

Note that simply toggling the lock with the above message does not change the default lock state on
power-up. The lock can be toggled any number of times. The lock will change to the default setting
on the next power cycle.

Setting the default state of the lock at power-up is described in Section 3.2: Bridge Configuration
Object (Class 0x64). When the configuration is locked, sending the above message is the only way to
unlock it again.

EtherNet/IP – Modbus XPort XPort Operation •••• 5

3.2 Bridge Configuration Object (Class 0x64)
The various settings of the bridge and the Modbus port on the XPort can be configured through
EtherNet/IP via Get_Attribute_Single (0x0E) and Set_Attribute_Single (0x10) Services directed at
Vendor Specific Object Class 100 (0x64), Instance 1.

Attr ID
(dec)

Attr ID
(hex)

Access Name Data Type Description

100 0x64 Get Modbus Status UINT (See below for Bit Mask
definition)

101 0x65 Get Modbus Extended Status UDINT (See below for definition)
102 0x66 Get/Set Modbus Type* USINT 1 = RTU, 2 = ASCII (Default =

RTU)
103 0x67 Get/Set Modbus Slave Address* USINT The address of the Modbus

Slave (Default = 1)
104 0x68 Get/Set Modbus Baud Rate* USINT The baud rate of the Modbus

communication (See below for
semantics of values, Default =
7, 19.2 kbps)

105 0x69 Get/Set Modbus Data Bits* USINT 7 or 8 Serial Data Bits (Default
= 8)

106 0x6A Get Modbus Stop Bits USINT Always 1
107 0x6B Get/Set Modbus Parity* USINT (See below for semantics of

values, Default = 1, Even
Parity)

108 0x6C Get/Set Actively Scan Slave* USINT 0 = No, 1 = Yes (See below for
definition, Default = 0)

109 0x6D Get/Set Modbus Client Run/Idle
Mode*

USINT 0 = Idle, 1 = Run (See below
for definition, Default = 0)

110 0x6E Get/Set BOOTP Enabled * USINT 0 = Disabled, 1 = Enabled
(Default = Enabled). (See
below also)

111 0x6F Get/Set EIP Network Status Register* UINT A Modbus Register to update
with the EIP NS LED State
(See below for definition,
Default = 0)

112 0x70 Get/Set EIP Module Status Register* UINT A Modbus Register to update
with the EIP MS LED State
(See below for definition,
Default = 0)

113 0x71 Get/Set Configuration Lock Default on
Power-up*

USINT 0 = Unlocked, 1 = Locked. Set
to 1 to lock configuration on all
subsequent power-ups. Set to 0
to be unlocked on subsequent
power-ups. (Default = 0).

114 0x72 Get/Set Restore Factory Defaults USINT 0 = No, 1 = Yes. If set to 1, the
unit will load factory defaults
on next power-up (Default = 0).

115 0x73 Get/Set IP Address Registers (start
address)*

UINT The first of two consecutive
Modbus registers containing IP
address. Read on startup if non-
zero. (See below for definition,
Default = 0)

6 •••• XPort Operation EtherNet/IP – Modbus XPort

116 0x74 Get/Set Subnet Mask Registers (start
address)*

UINT The first of two consecutive
Modbus registers containing
Subnet Mask. Read on startup if
non-zero. (See below for
definition, Default = 0)

117 0x75 Get/Set Gateway Registers (start
address)*

UINT The first of two consecutive
Modbus registers containing
Gateway. Read on startup if
non-zero. (See below for
definition, Default = 0)

118 0x76 Get/Set MAC Address Registers (start
address)*

UINT The first of three consecutive
Modbus registers to receive
MAC Address. Written on
startup if non-zero. (See below
for definition, Default = 0)

119 0x77 Get/Set Modbus Master Inter-scan
Delay*

UINT The amount of time the internal
Modbus Master will delay in
milliseconds before starting the
next loop of reads and writes.
(See below for definition,
Default = 100 ms)

120 0x78 Get/Set Modbus Master Inter-message
Idle Time*

UINT The amount of time the internal
Modbus Master will delay in
milliseconds between the end of
receiving a Modbus response
and sending the next request.
(See below for definition,
Default = 10 ms)

121 0x79 Get/Set Modbus Master Output
Heartbeat*

UINT The amount of time that should
elapse before the Modbus
Master sends Output data that
has not changed. (See below for
definition, Default = 0 ms)

122 0x7A Get/Set Modbus Master NS/MS LED
Heartbeat*

UINT The amount of time that should
elapse before the Modbus
Master sends an EIP NS/MS
LED status that has not
changed. (See below for
definition, Default = 0 ms)

123 0x7B Reserved

* Denotes that the attribute is saved in non-volatile memory and the value is preserved after a power
cycle (unless the “Restore Factory Defaults” attribute was set prior to reset).

Invalid values for a Set_Attribute_Single request return the appropriate EtherNet/IP error response.

EtherNet/IP – Modbus XPort XPort Operation •••• 7

3.2.1 Modbus Status (Attribute 100)
This attribute always maintains the current status of the module according to the bit field of flags
defined in the table below. A flag is considered to be “Set” if the corresponding bit is 1. If the value
of the status attribute is zero (0), then everything is currently operating normally with a valid
configuration and no pending edits.

Bit (0 = LSB) Status Flag

0 Modbus error – slave is responding with error codes. Extended
Module Status (Attribute 101) contains the error code information

1 Modbus error – communication with slave timed-out (was previously
established)

2 Modbus error – communication with slave cannot be established at all
3-7 Reserved

8 Unit is currently active at factory defaults
9 Unit has a new configuration that will take effect upon reset.

10-15 Reserved

3.2.2 Extended Modbus Status (Attribute 101)
This attribute contains additional error information when a Modbus error in Attribute 100 is flagged.
Each byte contains a different value as defined in the table below. Overall, the bytes indicate the error
codes that are being returned by the Modbus slave during I/O communication. If multiple Assembly
mappings are returning errors, the last mapping’s error is contained in this attribute. If the slave stops
sending errors, this status will be set back to zeroes.

Byte 3 (MSB) Byte 2 Byte 1 Byte 0 (LSB)
Modbus Exception
Code from slave

Modbus Error Code
from slave

(0x80 + FC)

Mapping ID
receiving the error

(1…10)

Assem Inst
receiving the error

(0x65, 0x66)

3.2.3 Modbus Baud Rate (Attribute 104)

Attr Value Baud (bps) Attr Value Baud (bps)
0 300 8 28800
1 600 9 38400
2 1200 10 57600
3 2400 11 76800
4 4800 12 93750
5 9600 13 115200
6 14400 14 187500
7 19200 15 230400

8 •••• XPort Operation EtherNet/IP – Modbus XPort

3.2.4 Modbus Parity (Attribute 107)

Attr Value Parity
0 None
1 Even
2 Odd

3.2.5 Actively Scan Slave and Run/Idle for Modbus C lient
(Attributes 108 & 109)

These attributes control the behavior of the Modbus client within the XPort while an EtherNet/IP I/O
connection is not present. The Modbus client acts as a “scanner” of the Modbus slave according to the
I/O mappings defined in the XPort’s configuration. The client can regularly read the slave’s registers,
regularly read and write the slave’s registers, or not communicate at all. The following two tables
describe the client’s behavior based on the values of these two attributes:

Value Attribute 108 – Actively Scan Slave
0 The client will not scan the slave at all when an EtherNet/IP I/O

connection is not present. The value of Attribute 109 is ignored.
1 The client will scan the slave when an EtherNet/IP I/O connection is

not present. Attribute 109 is used to define the scanning behavior.

Value Attribute 109 – Run/Idle
0 Idle Mode – the client will only read the slave’s inputs regularly.
1 Run Mode – the client will read the slave’s inputs and write the slave’s

outputs regularly.

This functionality can be useful while configuring the device or reading and writing data explicitly via
the Assembly Object’s data attribute.

Again, note that these attributes only control the behavior when an EtherNet/IP I/O connection is not
established and the configuration is locked. When a connection is established, the client will begin
actively scanning the slave, regardless of the value in Attribute 108. The Run/Idle bit in the first word
of the output assembly data will tell the client to operate in Idle Mode or Run Mode, regardless of the
value in Attribute 109.

NOTE: These attributes must be set to “1” in order to pass EtherNet/IP conformance!

3.2.6 BOOTP Behavior (Attribute 110)
If BOOTP is enabled and the BOOTP request fails (time-out occurs after approximately 30 seconds),
then the module will come online at the IP address that resides in non-volatile memory. This will be
the value assigned by the previous BOOTP request or the factory default of 192.168.0.254. If BOOTP
gets disabled and the power is cycled, the IP address that resides in non-volatile memory will be used.

EtherNet/IP – Modbus XPort XPort Operation •••• 9

3.2.7 EtherNet/IP Network and Module Status Registe rs
(Attributes 111 & 112)

These two attributes can be set to contain register addesses in the Modbus slave that should be updated
with the EtherNet/IP Network Status and Module Status. If the attribute is set to 0x0000, the XPort
will not update anything with the corresponding status. These status registers can be used by the
Modbus slave to update LEDs in its hardware. Note that the XPort does not have its own LEDs for
this purpose, nor are there enough I/O pins to represent all of the states of two bi-color LEDs.
Therefore these LEDs must be implemented in the slave’s hardware and firmware. The slave is also
responsible for performing the power-on blink sequence and maintaining proper blink timing as
defined in the CIP Specification.

The Write Single Register Function Code (0x06) is used by the Modbus client. The valid range of
values is 0x0000 to 0xFFFF.

The following table summarizes the actual status values that will be written to the two registers.

MSb LSb

15 … 3 2 1 0

Reserved Flash Red Green

Bit 0: if 0, green color is off; if 1, green color is on.

Bit 1: if 0, red color is off; if 1, red color is on.

Bit 2: if 0, color is steady/solid; if 1, color is blinking.

For example a blinking green LED would be represented by 101, a solid red LED would be 010, off
would be 000, and 011 is undefined since the LED cannot be both colors at once. The remaining 13
bits are reserved for future use, such as reporting additional state information, and should be ignored
(not assumed to be zero).

3.2.8 IP Address, Subnet Mask, and Gateway Register s
(Attributes 115, 116, & 117)

NOTE: The use of these registers is dependent on whether or not the XPort is set to use BOOTP or not.

These three attributes define the first of two consecutive Modbus registers containing IP Address
(attribute 115), Subnet Mask (attribute 116), and Gateway (attribute 117). If the attribute is non-zero
(set to a register number), the Modbus master will read/write IP Address, Subnet Mask, or Gateway
from/to the Modbus slave’s registers. The default for these attributes is zero.

If the attribute is non-zero and BOOTP is disabled:

� On startup, the XPort will read the IP Address, Subnet Mask, and/or Gateway from the
Modbus registers.

� If the IP Configuration attribute (EtherNet/IP Object Class 0xF5, Instance 0x01, Attribute
0x05) is written with a new valid configuration, the XPort will write the new IP Address
Subnet Mask to the Modbus registers.

o If a success response is received from the Modbus write, then success is sent over
EtherNet/IP.

o If an error response is received from the Modbus write, then an error response is sent
over EtherNet/IP.

o A success over EtherNet/IP will cause the XPort to reset and re-read the IP address
and/or subnet mask from either non-volatile memory or the Modbus registers.

If the attribute is non-zero and BOOTP is enabled:

10 •••• XPort Operation EtherNet/IP – Modbus XPort

� The XPort will not attempt to read the IP Address, Subnet Mask, and/or Gateway from the
Modbus registers.

� The XPort will not allow the IP Configuration attribute (EtherNet/IP Object Class 0xF5,
Instance 0x01, Attribute 0x05) to be written.

� Upon receiving an IP Address, Subnet Mask, and/or Gateway via BOOTP, the XPort will
write the new values to the Modbus registers.

The following table shows an example how the attribute value translates into Modbus register numbers
and how the data in these registers translates into an IP address or subnet mask.

Attribute set
to (in hex):

Modbus Registers Register Values Translates to
Address:

“70 00” 40112
40113

0x0201
0x0403

1.2.3.4

“80 00” 40128
40129

0xFFFF
0x00FF

255.255.255.0

“90 00” 40128
40129

0x0201
0x0103

1.2.3.1

3.2.9 MAC Address Registers (Attribute 118)
This attribute defines the first of three consecutive Modbus registers to receive the MAC address of the
XPort. If the attribute is non-zero (set to a register number), the Modbus master will write MAC
address to the Modbus slave’s registers on startup. The default for this attribute is zero.

The following table shows an example how this attribute value translates into Modbus register
numbers and how the data in these registers translates into a MAC address:

Attribute set
to (in hex):

Modbus Registers Register Values Translates to
Address:

“90 00” 40144
40145
40146

0x2000
0x8F4A
0xF290

00:20:4A:8F:90:F2

3.2.10 Modbus Master Timings & Behavior (Attributes 119,
120, 121, & 122)

The Modbus Master inside the XPort has a loop that continually reads and writes the registers of the
Modbus slave. These attributes allow you to tune the behavior of the Master and adjust how fast it
operates. These can be useful if you want to speed-up the Modbus Master to boost performance or
slow it down if your Modbus Slave’s processor cannot keep up.

On every loop, the Modbus Master performs the following in this order:

� Send Network Status LED Message (if necessary)

� Send Module Status LED Message (if necessary)

� Send Modbus Read Messages

� Send Modbus Write Messages (if necessary)

EtherNet/IP – Modbus XPort XPort Operation •••• 11

The attributes to control the behavior are defined as follows:

� Modbus Master Inter-scan Delay – The number of milliseconds the Master will delay between
every scan loop before executing again. The default is 100 milliseconds.

� Modbus Master Inter-message Idle Time – The number of milliseconds the Master will delay
after the end of the receipt of a Modbus response until sending the next Modbus request. The
default is 10 ms.

� Modbus Master Output Heartbeat – The number of milliseconds that must elapse before the
Master will send a Modbus Write command for output data if it has not changed. The default
is 0 ms, which means output data will be written on every scan, regardless of whether it has
changed or not. Setting it to 0xFFFF will disable the heartbeat entirely and output data will be
written only after a change.

� Modbus Master NS/MS LED Heartbeat – The number of milliseconds that must elapse before
the Master will send the Modbus message to write status of the EIP NS/MS LEDs (if
configured) if they have not changed. The default is 0 ms, which means the LED status will
be written on every scan, regardless of whether it has changed or not. Setting it to 0xFFFF
will disable the heartbeat and the LED status will be written only after a change.

The valid range for all of these attributes is 0 to 65535 (0xFFFF) ms.

Note for the heartbeat timings – if the normal execution time of one loop/scan is, for example, 200ms,
then setting the heartbeat attribute value to anything between 0 and 200 ms will still cause the message
to be sent on every scan.

12 •••• XPort Operation EtherNet/IP – Modbus XPort

3.3 Input (T->O) EtherNet/IP to Modbus Mapping
(Class 0x65)

The firmware in the XPort maintains a table of the mapping between the EtherNet/IP Input (T->O)
Assembly and the Modbus function calls. The information in this table is saved in non-volatile
memory. The data in the table can be configured through EtherNet/IP via Get_Attribute_Single
(0x0E) and Set_Attribute_Single (0x10) Services directed at Vendor Specific Object Class 101 (0x65),
Instance 1.

Attr ID
(dec)

Attr ID
(hex)

Access Name Data Type Description

100 0x64 Get Input Data Size UINT Current size of the Assembly data in
16-bit words. Whenever a Mapping
is changed, this attribute will be
immediately updated with the new
size.

101 0x65 Get/Set Mapping 1 Struct of:

USINT Modbus Function Code (0x01, 0x02,
0x03, 0x04)

UINT Starting Register Number (Register
Address + 1) (0x0001 - 0xFFFF)

UINT Quantity of Coils (1-2000), Inputs (1-
2000), Holding Registers (1-125), or
Input Registers (1-125)

102 0x66 Get/Set Mapping 2 Struct Same as Mapping 1

103 0x67 Get/Set Mapping 3 Struct Same as Mapping 1

104 0x68 Get/Set Mapping 4 Struct Same as Mapping 1

105 0x69 Get/Set Mapping 5 Struct Same as Mapping 1

106 0x6A Get/Set Mapping 6 Struct Same as Mapping 1

107 0x6B Get/Set Mapping 7 Struct Same as Mapping 1

108 0x6C Get/Set Mapping 8 Struct Same as Mapping 1

109 0x6D Get/Set Mapping 9 Struct Same as Mapping 1

110 0x6E Get/Set Mapping 10 Struct Same as Mapping 1

111 0x6F Reserved

Once a Set_Attribute_Single message is received, the standard EtherNet/IP error checks will be
performed. If all error checks pass, the values of the structure will be checked against the set of valid
vales. If this check passes, a Modbus message will be sent to the slave device to test if the supplied
function code and data are supported in the slave. If a success response is received from the Modbus
slave, an EtherNet/IP success response is returned to indicate Modbus success. If an exception
response is received from the Modbus slave, an EtherNet/IP error code of 0x1F (Vendor Specific
Error) response is sent with the data set to the exact Modbus error response received from the slave (1
byte error code + 1 byte exception code). If there is no response from the slave, the EtherNet/IP error
code will be 0x02 (Resource Unavailable).

The mappings are used to construct the Input data message that will be sent from the XPort to the
EtherNet/IP connection originator via an I/O message. The input data buffer is organized as follows:

16-bit
Status

Mapping 1 Mapping 2 … Mapping 10

EtherNet/IP – Modbus XPort XPort Operation •••• 13

The first two bytes provide the status of the device. This value is identical to Class 100, Instance 1,
Attribute 100. It provides information about the status of the configuration, health of the device, and
status of the Modbus link.

Unused mappings will contain all zeros in the corresponding attribute structure and will not be
included in the input data buffer. The input data buffer will be of dynamic total length up to 500 bytes
(250 words) according to the combined length of all the mappings. If this length is exceeded, a CIP
Error Response 0x1B (Routing Failure, Response Packet Too Large) will be generated for the
Set_Attribute_Single message that caused the overflow and the target mapping will remain unchanged.

A mapping can be deleted by setting it to all zeroes.

The factory default configuration does not contain any mappings. The 16-bit status is always
provided, so the factory default size of this assembly is 2 bytes.

The data length of the current configuration is in Attribute 100 of this class. The value in this attribute
is automatically updated as mappings are changed. Note that the new configuration does not take
effect until the power is cycled on the unit. Therefore if the configuration is changed, Attribute 100
will contain the value of the new data size that will only take effect after a power cycle - not the size
that is currently active.

14 •••• XPort Operation EtherNet/IP – Modbus XPort

3.4 Output (O->T) EtherNet/IP to Modbus Mapping
(Class 0x66)

The firmware in the XPort will maintain a table of the mapping between the EtherNet/IP Output (O-
>T) Assembly and the Modbus function calls. The information in this table will be saved in non-
volatile memory. The data in the table can be configured through EtherNet/IP via
Get_Attribute_Single (0x0E) and Set_Attribute_Single (0x10) Services directed at Vendor Specific
Object Class 102 (0x66), Instance 1.

Attr ID
(dec)

Attr ID
(hex)

Access Name Data Type Description

100 0x64 Get Output Data
Size

UINT Current size of the Assembly data in
16-bit words. Whenever a Mapping
is changed, this attribute will be
immediately updated with the new
size.

101 0x65 Get/Set Mapping 1 Struct of:

USINT Modbus Function Code (0x0F, 0x10)

UINT Starting Register Number (Register
Address + 1) (0x0001 - 0xFFFF)

UINT Quantity of Coils (1-1968), Registers
(1-120)

102 0x66 Get/Set Mapping 2 Struct Same as Mapping 1

103 0x67 Get/Set Mapping 3 Struct Same as Mapping 1

104 0x68 Get/Set Mapping 4 Struct Same as Mapping 1

105 0x69 Get/Set Mapping 5 Struct Same as Mapping 1

106 0x6A Get/Set Mapping 6 Struct Same as Mapping 1

107 0x6B Get/Set Mapping 7 Struct Same as Mapping 1

108 0x6C Get/Set Mapping 8 Struct Same as Mapping 1

109 0x6D Get/Set Mapping 9 Struct Same as Mapping 1

110 0x6E Get/Set Mapping 10 Struct Same as Mapping 1

111 0x6F Reserved

Once a Set_Attribute_Single message is received, the standard EtherNet/IP error checks will be
performed. If all error checks pass, the values of the structure will be checked against the set of valid
vales. If this check passes, a Modbus READ message will be sent to the slave device to test if the
supplied registers are supported in the slave. Note: In this case, the XPort will not attempt to write the
coils/registers specified by that mapping. If a success response is received from the Modbus slave, an
EtherNet/IP success response is returned to indicate Modbus success. If an exception response is
received from the Modbus slave, an EtherNet/IP error code of 0x1F (Vendor Specific Error) response
is sent with the data set to the exact Modbus error response received from the slave (1 byte error code
+ 1 byte exception code). If there is no response from the slave, the EtherNet/IP error code will be
0x02 (Resource Unavailable).

Actual writes are only performed when the Modbus client is in Run mode, so any possible errors (i.e.
trying to write a read-only register) are reported only when valid I/O is exchanged. The errors are
accessible via the status word in the Input I/O data and the status attributes of the Bridge Configuration
Object.

The mappings are used to parse the output data message that will be sent from the EtherNet/IP
connection originator to the XPort via an I/O message. The mappings are then translated to Modbus
data to send to the slave. The output data buffer is organized as follows:

EtherNet/IP – Modbus XPort XPort Operation •••• 15

16-bits

Run/Idle
Mapping 1 Mapping 2 … Mapping 10

Unused mappings will contain all zeros in the corresponding attribute structure and will not be
included in the output data buffer. The output data buffer will be of dynamic total length up to 500
bytes (250 words) according to the combined length of all the mappings. If this length is exceeded, a
CIP Error Response 0x1A (Routing Failure, Request Packet Too Large) will be generated for the
Set_Attribute_Single message that caused the overflow and the target mapping will be unchanged.

A mapping can be deleted by setting it to all zeroes.

The factory default configuration does not contain any mappings, so the default size of this assembly is
2 bytes.

Only bit 0 of the first word is defined as the Run/Idle command for the Modbus client. When an I/O
connection is active, a zero (0) in this bit represents Idle Mode and a one (1) represents Run Mode. In
Idle mode, the Modbus client will only read the slave’s registers. In Run mode, it will read and write
the slave’s registers.

The data length of the current configuration is in Attribute 100 of this class. The value in this attribute
is automatically updated as mappings are changed. Note that the new configuration does not take
effect until the power is cycled on the unit. Therefore if the configuration is changed, Attribute 100
will contain the value of the new data size that will only take effect after a power cycle - not the size
that is currently active.

16 •••• XPort Operation EtherNet/IP – Modbus XPort

3.5 Identity Configuration Object (Class 0x6E)
In order to customize the XPort for different Modbus slaves, the EtherNet/IP Identity Object
information must be configurable. This object provides the means to set some Identity Object
attributes and the XPort’s Ethernet MAC Address. The attributes can be accessed via
Get_Attribute_Single (0x0E) and Set_Attribute_Single (0x10) Services directed at Vendor Specific
Object Class 110 (0x6E), Instance 1. The attribute mapping parallels that of the standard CIP Identity
Object Class 0x01.

Attr ID
(dec)

Attr ID
(hex)

Access Name Data Type Description

100 0x64 Get/Set Custom Ethernet
MAC Address

6 USINTs (See below for definition)

101 0x65 Get/Set Vendor ID UINT CIP Vendor ID (Default = 940)

102 0x66 Get/Set Device Type UINT CIP Device Type (Default = 12)

103 0x67 Get/Set Product Code UINT CIP Product Code (Default = 201)

104 0x68 Get/Set Product Revision 2 USINTs (See below for definition)

105 0x69 Reserved

106 0x6A Get/Set Serial Number UDINT (See below for definition)

107 0x6B Get/Set Product Name Short String (See below for definition)

108 0x6C Reserved

* Note that this entire object will not exist if the firmware is locked.

Invalid values for a Set_Attribute_Single request will return the appropriate EtherNet/IP error
response. Any values successfully set will be written to non-volatile memory and take effect after a
power cycle.

3.5.1 Custom Ethernet MAC Address (Attribute 100)
This attribute is of the form AA-BB-CC-DD-EE-FF where AA is the first byte in the data buffer and
FF is the sixth byte in the data buffer. If this is left as all zeros, the default MAC Address (from
Lantronix) of the XPort will be used. The default of this attribute is all zeros.

3.5.2 Product Revision (Attribute 104)
This attribute is a Struct of two USINTs. The first byte in the data buffer is the product’s major
revision and the second byte is the minor revision. The default is the firmware revision of the XPort.

3.5.3 Serial Number (Attribute 106)
If this attribute is zero, a serial number is constructed from the MAC Address.

3.5.4 Product Name (Attribute 107)
The data type of the Product Name is a “Short String” as defined in the CIP specification. The first
byte in the data buffer identifies the length of the product name (number of actual characters, do not
count NULL terminators). The second byte is the first letter in the product name; the third byte is the
second letter, and so on. Do not include any NULL characters (i.e. string terminator) at the end of the
string – only significant characters. The length of the product name is limited to 32 characters. The
default product name is “XPort-EIP-MB”.

EtherNet/IP – Modbus XPort XPort Operation •••• 17

3.6 Input (T->O) Assembly Object (Class 0x04,
Instance 0x65)

The mappings defined by Vendor Specific Object Class 0x65 define the standard EtherNet/IP
Assembly Object Instance 0x65.

3.7 Output (O->T) Assembly Object (Class 0x04,
Instance 0x66)

The mappings defined by Vendor Specific Object Class 0x66 define the standard EtherNet/IP
Assembly Object Instance 0x66.

3.8 Configuration Assembly Object (Class 0x04,
Instance 0x80)

The Configuration Assembly Object is not implemented. However, some EtherNet/IP clients require
one. If this is the case, use Instance ID 0x80 with a data length of 0.

18 •••• TFTP Services EtherNet/IP – Modbus XPort

4 TFTP Services
The XPort contains an embedded TFTP server that can be used to read or write a configuration file and
update the XPort firmware. However, the firmware must first be unlocked before any files can be
uploaded. The configuration file can be downloaded at any time. The TFTP server only supports
standard TFTP, not Extended TFTP.

Free TFTP client software is available on the WWW at http://www.weird-solutions.com/

We have recently discovered that the above TFTP client does not behave properly when the server (the
XPort) requests retransmission of a packet. Rather than retransmitting the same packet, this client
transmits the next packet’s data using the block number of the packet requested for retransmission.
Therefore the server accepts it as the retransmitted data since the block number matches. The result is
that the firmware in flash is missing blocks of data. We have observed retransmission attempts
occurring only when using the XPort on a half-duplex hub with other network traffic present. The
connection is extremely reliable over a full-duplex switch.

4.1 Configuration File
The configuration file contains all of the configurable data within the XPort, as defined in this
document. Therefore, rather than having to configure every XPort using EtherNet/IP messaging, a
configuration file can be created with a binary/hex file editor and loaded into every XPort.

NOTE: It is NOT recommended to configure the XPort by manually editing this file. Configuration
should be performed via EtherNet/IP messaging as described earlier in this manual.

4.1.1 Uploading and Downloading
To download the configuration file, use a TFTP client to connect to the XPort and request the file
“config.bin” (without the quotes). Any other file name will not be accepted.

To upload the configuration file, unlock the firmware and upload the file using a TFTP client. The
only requirement for the file name is that the file extension is “.bin” – any file name is accepted. Note
that on the server, the file name gets changed to “config.bin”. The uploaded file is checked for validity
before being saved to flash. If the file is valid, the old configuration in flash is overwritten.

4.1.2 Binary File Specification
The following binary file specification for the configuration file is aligned with Firmware version 1.13.

Offset
(hex)

Offset
(dec)

Type Num
Bytes

Name

0x00 0 UINT 2 Vendor ID
0x02 2 UINT 2 Device Type
0x04 4 UINT 2 Product Code
0x06 6 USINT 1 Major Revision
0x07 7 USINT 1 Minor Revision
0x08 8 USINT 1 Product Name Length, 1-32
0x09 9 32 USINTs 32 Product Name String, 1-32 bytes
0x29 41 UDINT 4 Serial Number
0x2D 45 6 USINTs 6 MAC Address
0x33 51 4 USINTs 4 IP Address
0x37 55 4 USINTs 4 Subnet Mask
0x3B 59 4 USINTs 4 Gateway

EtherNet/IP – Modbus XPort TFTP Services •••• 19

Offset
(hex)

Offset
(dec)

Type Num
Bytes

Name

0x3F 63 USINT 1 BOOTP Enabled Flag
0x40 64 USINT 1 Modbus Type (RTU or ASCII)
0x41 65 USINT 1 Modbus Slave Address
0x42 66 USINT 1 Modbus Baud Rate
0x43 67 USINT 1 Modbus Data Bits
0x44 68 USINT 1 Modbus Stop Bits
0x45 69 USINT 1 Modbus Parity
0x46 70 USINT 1 Active Scan Enabled Flag
0x47 71 USINT 1 Run Mode Enabled Flag
0x48 72 UINT 2 NET LED Register
0x4A 74 UINT 2 MOD LED Register
0x4C 76 USINT 1 Configuration Lock Default
0x4D 77 USINT 1 Restore Factory Defaults
0x4E 78 UINT 2 IP Address Registers Start Address
0x50 80 UINT 2 Subnet Mask Registers Start Address
0x52 82 UINT 2 Gateway Registers Start Address
0x54 84 UINT 2 MAC Address Registers Start Address
0x56 86 UINT 2 Modbus Master Inter-scan Delay (ms)
0x58 88 UINT 2 Modbus Master Inter-message Idle Time (ms)
0x5A 90 UINT 2 Modbus Master Output Heartbeat (ms)
0x5C 92 UINT 2 Modbus Master NS/MS LED Heartbeat (ms)
0x5E 94 UINT 2 Total EIP Input Data Length in Words*
0x60 96 UINT 2 Total EIP Output Data Length in Words*
0x62 98 USINT 1 Input Map 1 – Modbus Function Code
0x63 99 UINT 2 Input Map 1 – Start Address
0x65 101 UINT 2 Input Map 1 – Quantity
0x67 103 UINT 2 Input Map 1 – EIP Input Length in Bytes*
0x69 105 7 Input Map 2 – Same structure as Map 1
0x70 112 7 Input Map 3 – Same structure as Map 1
0x77 119 7 Input Map 4 – Same structure as Map 1
0x7E 126 7 Input Map 5 – Same structure as Map 1
0x85 133 7 Input Map 6 – Same structure as Map 1
0x8C 140 7 Input Map 7 – Same structure as Map 1
0x93 147 7 Input Map 8 – Same structure as Map 1
0x9A 154 7 Input Map 9 – Same structure as Map 1
0xA1 161 7 Input Map 10 – Same structure as Map 1
0xA8 168 USINT 1 Output Map 1 – Modbus Function Code
0xA9 169 UINT 2 Output Map 1 – Start Address
0xAB 171 UINT 2 Output Map 1 – Quantity
0xAD 173 UINT 2 Output Map 1 – EIP Output Length in Bytes*
0xAF 175 7 Output Map 2 – Same structure as Map 1
0xB6 182 7 Output Map 3 – Same structure as Map 1
0xBD 189 7 Output Map 4 – Same structure as Map 1
0xC4 196 7 Output Map 5 – Same structure as Map 1
0xCB 203 7 Output Map 6 – Same structure as Map 1
0xD2 210 7 Output Map 7 – Same structure as Map 1
0xD9 217 7 Output Map 8 – Same structure as Map 1
0xE0 224 7 Output Map 9 – Same structure as Map 1
0xE7 231 7 Output Map 10 – Same structure as Map 1
0xEE 238 USINT 1 8-bit Checksum of all the above values
0xEF 239 USINT 1 1’s Complement of the 8-bit Checksum

Notes regarding some of the fields in the configuration file:

20 •••• TFTP Services EtherNet/IP – Modbus XPort

• Input and Output data lengths (marked by *) are re-calculated by the firmware on every boot.

• UINT and UDINT data types are stored in Little-Endian format.

• All arrays or strings of USINTs are stored byte-by-byte in the order the bytes would be
visually read from left to right. (i.e. IP Address 12.34.56.78 is stored with 0x12 at the lowest
offset going up to 0x78 at the highest offset).

4.2 Firmware Upload
To upload new firmware, unlock the firmware and upload the firmware file using a TFTP client. The
firmware file must be a valid DSTni SPB (Serial Program Binary) file with the “.spb” extension.
Currently any file name is accepted. The file’s first TFTP packet contains the SPB header and
checksum information which is validated before any data is written to flash. Note that due to RAM
limitations in the XPort, the firmware file must be written to flash as the TFTP packets are received –
one by one. Therefore it is imperative that you allow a firmware file to completely upload before
resetting the target XPort or closing the TFTP client. Once the header is validated and the upload
begins, the old firmware is already being overwritten. Canceling the transfer before completion will
result in corrupt firmware that will not load after the XPort is reset. If an error occurs during the
transfer, DO NOT reset the XPort. Remedy the problem described by the TFTP error message and
attempt the upload again.

