
 

Version 1.0
Copyright © 2016

ESP-WROOM-S2
Hardware Evaluation

Platform

About This Guide
This document introduces ESP-WROOM-S2 hardware platform developed by Espressif.
The structure is as below:

Release Notes

Chapter Title Content

Chapter 1 Hardware Evaluation Plarform Hardware evaluation platform details.

Chapter 2 Preparing the Hardware STM32 development board connection.

Chapter 3 Downloading Firmware to ESP-WROOM-S2 Download firmware to HSPI Flash via S2 Module
Serial Interface.

Chapter 4 Host MCU Configuration and Programming Operation on Host side.

Chapter 5 Host - ESP Interaction Host and ESP8266 interaction process and
scripting tool.

Date Version Release notes

2016.08 V1.0 Initial release.

Table of Contents
1. Hardware Evaluation Platform	 1
..

2. Preparing the Hardware	 3
..

3. Downloading Firmware to ESP-WROOM-S2	 5
...

4. Host MCU Configuration and Programming	 7
..

5. Host - ESP Interaction	 8
..
5.1. Recommended Interaction Sequence	 8
...
5.2. Integrating boot.bin in Host MCU Program	 8...

!

1. Hardware Evaluation Platform

1. Hardware Evaluation Platform
Hardware evaluation platform is composed of 3 parts: ESP-WROOM-S2 module + ESP-
Launcher backplane + STM32 development board (Type: ALIENTEK ELITE STM32F103).
ESP-Launcher details:

!
Figure 1-1: ESP-Launcher Backplane

!
Figure 1-2: ESP-WROOM-S2

Espressif ! /111 2016.08

!

1. Hardware Evaluation Platform

!
Figure 1-3: The Front View of the STM32 Development Board

!
Figure 1-4: The Back View of the STM32 Development Board  

Espressif ! /112 2016.08

!

2. Preparing the Hardware

2. Preparing the Hardware
1. Remove resistor R29 on the ESP8266 backplane.
2. Lead the SDIO communication lines out of ESP-WROOM-S2 and connect it to the SDIO

interface lines on STM32 development board (or any other MCU development board
with SDIO host, hereinafter referred to as MCU).In practice, users should follow MCU
development board interfacing guidelines when making connections. STM32F103ZET6
SDIO pin functions are as follows:

• Pin PC8 ————> SD0 function.

• Pin PC9 ————> SD1 function.

• Pin PC10 ———-> SD2 function.
• Pin PC11 ———-> SD3 function.
• Pin PC12 ———-> SCLK function.

• Pin PD2 ————> CMD function.

3. Connect ESP-WROOM-S2 to the interface on ESP8266 backplane. The location of the
interface’s location is marked on the upper left side of Figure 1-1 for your reference.

⚠ Notice:

Lead the SDIO interface pins with short jumper wires of approximately equal length and keep them away from
other components operating at high frequencies! Pull-up or termination resistors matching the host MCU
board may be used.

⚠ Notice:

Please connect the pins in the correct order.

Espressif ! /113 2016.08

!

2. Preparing the Hardware

!
Figure 2-1: ALIENTEK ELITE STM32F103 Elite with ESP-WROOM-S2 Connected

Espressif ! /114 2016.08

!

3. Downloading Firmware to ESP-WROOM-S2

3. Downloading Firmware to
ESP-WROOM-S2

Download firmware to HSPI FLASH via ESP-WROOM-S2 Serial Interface.
1. Put IO0 to low level and CH_EN to high level.

2. Connect IO15 to GND with Dupont Lines. Power on S2 Module so that it can enter the
download state.

3. Disconnect IO15 and GND.
4. Open ESP8266 DOWNLOAD TOOL and enter HSPIDownload interface. Choose DIO for

SPI MODE, open COM port and the binaries, then click START to start download.

5. After download, restart MCU development board and ESP-WROOM-S2.

!
Figure 3-1: Log after Restart

⚠ Notice:

Due to pin conflicts, AT instructions based on SDIO can not use UART flow control.

Espressif ! /115 2016.08

!

3. Downloading Firmware to ESP-WROOM-S2

HSPIDownload interface (subject to official release)

!

Figure 3-2: HSPIDownload Interface

Espressif ! /116 2016.08

!

4. Host MCU Configuration and Programming

4. Host MCU Configuration and
Programming

ESP-WROOM-S2 will start only after it receives the boot file sent from MCU. Software can
realise this function in the host MCU by downloading boot.bin to the MCU. Specific code
information can be found in official demo.
In the demo, boot.bin has been converted to arrays and integrated into the STM32 main
code. After the development board starts, STM32 development board will transfer boot.bin
to ESP-WROOM-S2 via SDIO interface. Then ESP-WROOM-S2 can start using the boot
binary. At this stage, send AT commands to the STM32 via serial interface. STM32 will then
receive the commands and forward them to the ESP8266 via SDIO interface.
Note that the STM32 can be run on its own, with the ESP-WROOM-S2 acting as a
companion for handling internet connectivity tasks and thus offloading the STM32. The
STM32 can also be configured to program the ESP-WROOM-S2 on the fly, without the
requirement of connecting/disconnecting jumpers manually.

⚠ Notice:

The document specifies host MCU configuration and programming for interfacing with the ESP-WROOM-S2
module. The programming and configuration procedure of the host MCU development board itself is not
covered here. Please consult the development board user manual for relevant information.

Espressif ! /117 2016.08

!

5.Host - ESP Interation

5. Host - ESP Interaction
5.1. Recommended Interaction Sequence

The host MCU must interact in a specific sequence with the ESP-WROOM-S2 to enable it
to boot properly and execute the firmware stored in the primary HSPI flash memory of the
module. Here are the recommended steps of this sequence:

1. User program running on the MCU initialises SDIO host mode on the host MCU.

2. Host MCU detects Slave. If Slave is detected, host MCU will load ESP8266 boot.bin to
ESP8266 RAM.

3. After boot.bin is loaded, host MCU will send instructions and make ESP8266 jump to
boot.bin.

4. After receiving boot jump instruction, ESP8266 will jump to boot binary and read
program from HSPI Flash and execute it.

5. When the program is running, if ESP8266 receives data sent via SDIO interface, it will
generate a corresponding interrupt and post data to the application layer.

6. ESP8266 can send data to host MCU by loading data to SDIO buffer and then
interrupting the host using the IRQ signal.

7. Host MCU generates interrupt IRQ and then reads interrupt information from ESP8266.
Data will be read from ESP8266 if there is any.

5.2. Integrating boot.bin in Host MCU Program
Expressif supplies bin_to_hex_flash.py, a scripting tool that can convert boot.bin into
array format for integrating directly into host MCU source code. To run the script, simply
place it under the same directory with boot_v1.5.1.bin and execute. The code is listed
below:

def bin_to_hex(bin_data):

 hex_list = []

 for c in bin_data:

 hex_list.append(ord(c))

 return hex_list

 pass

def modify_flash_map(flash_map, hex_list):

 hex_list[3] = (hex_list[3] & 0x0F) + (int(flash_map, base=10) <<
4)

Espressif ! /118 2016.08

!

5.Host - ESP Interation

 return hex_list

def hex_to_array(hex_data):

 data = "unsigned char bin_array[] = {\r\n"

 i = 0

 for _hex in hex_data:

 i += 1

 data += "0x%02x, " % _hex

 if i % 16 == 0:

 data += "\r\n "

 data = data[:-2]

 data += "};\r\n\r\n"

 data += "unsigned int bin_array_len = %d;\r\n" % len(hex_data)

 return data

 pass

def main():

 #f_name = raw_input("Please input file name:\r\n")

 f_name = "boot_v1.5.1.bin"

 flash_map = raw_input("Please select flash map:\r\n"

 "0. 4M_256_256;\r\n"

 "2. 8M_512_512;\r\n"

 "3. 16M_512_512;\r\n"

 "4. 32M_512_512;\r\n"

 "5. 16M_1024_1024;\r\n"

 "6. 32M_1024_1024;\r\n")

 with open(f_name, "rb") as f:

 bin_data = f.read()

 hex_data = bin_to_hex(bin_data)

 hex_data = modify_flash_map(flash_map, hex_data)

 file_content = hex_to_array(hex_data)

Espressif ! /119 2016.08

!

5.Host - ESP Interation

 with open(f_name + ".flash.bin", "wb+") as f:

 f.write("".join([chr(h) for h in hex_data]))

 with open(f_name + ".flash.c", "wb+") as f:

 f.write(file_content)

 pass

if __name__ == '__main__':

 main()

Espressif ! /1110 2016.08

Disclaimer and Copyright Notice
Information in this document, including URL references, is subject to change without
notice.
THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS
FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT
OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.
All liability, including liability for infringement of any proprietary rights, relating to use of
information in this document is disclaimed. No licenses express or implied, by estoppel or
otherwise, to any intellectual property rights are granted herein.
The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is
a registered trademark of Bluetooth SIG.
All trade names, trademarks and registered trademarks mentioned in this document are
property of their respective owners, and are hereby acknowledged.
Copyright © 2016 Espressif Inc. All rights reserved.

Espressif IOT Team

www.espressif.com

�

http://www.espressif.com

